
 
 
1 

Chapter 7 

Fundamentals of Orbital Mechanics 

Celestial mechanics began as the study of the motions of natural celestial bodies, 
such as the moon and planets.  The field has been under study for more than 400 
years and is documented in great detail.  A major study of the Earth-Moon-Sun 
system, for example, undertaken by Charles-Eugene Delaunay and published in 
1860 and 1867 occupied two volumes of 900 pages each.  There are textbooks 
and journals that treat every imaginable aspect of the field in abundance. 

Orbital mechanics is a more modern treatment of celestial mechanics to include 
the study the motions of artificial satellites and other space vehicles moving un-
der the influences of gravity, motor thrusts, atmospheric  drag, solar winds, and 
any other effects that may be present.  The engineering applications of this field 
include launch ascent trajectories, reentry and landing, rendezvous computations, 
orbital design, and lunar and planetary trajectories. 

The basic principles are grounded in rather simple physical laws.  The paths of 
spacecraft and other objects in the solar system are essentially governed by New-
ton’s laws, but are perturbed by the effects of general relativity (GR).  These per-
turbations may seem relatively small to the layman, but can have sizable effects 
on metric predictions, such as the two-way round trip Doppler.  The implementa-
tion of post-Newtonian theories of orbital mechanics is therefore required in or-
der to meet the accuracy specifications of MPG applications. 

Because it had the need for very accurate trajectories of spacecraft, moon, and 
planets, dating back to the 1950s, JPL organized an effort that soon became the 
world leader in the field of orbital mechanics and space navigation.  In doing so, 
it developed the fundamental ephemerides of planets, moons, and asteroids now 
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used by the International Astronomical Union (IAU) and appearing in the Astro-
nomical Almanac. 

The states of these and any other objects of interest in the solar system are tabu-
lated in ephemerides, generated either by JPL Navigation or by spacecraft pro-
jects, and put into standardized forms for ready usage by any applications to 
which these ephemerides are made available.  The standardization is made possi-
ble by software utilities provided by JPL’s Navigation Ancillary Instrumentation 
Facility (NAIF).   

NAIF also provides utilities for easy access to and manipulation of ephemerides, 
as well as tools for computation of characteristics of interest extracted from the 
ephemerides.  For example, the SPKEZ function returns states of any object pos-
sessing a NAIF identifier (NAIFID) as observed by any other NAIFID at a given 
ephemeris time and specified aberration type, provided the needed underlying 
ephemerides have been supplied.  The NAIF toolkit has become the international 
standard for ephemeris access and usage. 

The reader should appreciate that, while the creation of ephemerides and the de-
velopment of NAIF tools for accessing them require intensive knowledge of the 
principles of orbital mechanics, the users of these entities, such as the MPG de-
veloper, is spared much of this burden.  The skills deemed necessary for MPG 
development and maintenance include a familiarity with the basic terms and fun-
damentals of orbital mechanics, awareness of the range of utilities contained in 
the SPICE toolkit, and appreciation of which SPICE functions may be effective 
in MPG applications.  

The information contained in this chapter, of necessity, is therefore limited to an 
overview of orbital mechanics.  The level of detail has been narrowed to that be-
lieved sufficient to permit future MPG personnel to understand its algorithms and 
to extend its capability.  Those desiring fuller information are therefore directed 
to SPICE required reading, the commentary contained in the source code of 
NAIF utilities, any of a number of textbooks and journals in the field, and inter-
net searches.  

The reader is expected to have a basic familiarity with the concepts of time 
measurement, coordinate systems, mechanics, vector algebra, and numeric meth-
ods. 
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7.1 Coordinate Systems and Frames 

The subject of coordinate systems and frames is treated more fully in another 
chapter of this work.  This section provides a short summary as applicable to the 
needs of the current chapter. 

In metric prediction generation, it is sometimes necessary to represent the states 
(i.e., positions and velocities) of objects in a number of different coordinate sys-
tems according to the contexts in which these are to be used.  Each coordinate 
system corresponds to a way of expressing positions and velocities with respect 
to a particular frame of reference, such as a set of rectangular axes.    

In principle, it is possible to obtain a standard celestial coordinate frame that is 
fixed in space by fixing the orientation of a chosen inertial coordinate frame at a 
specified instant, called the standard epoch. In practice, the axes may not be di-
rectly observable at the standard epoch, but they may be inferred by adopting a 
catalog of the positions and motions of a set of stars or other celestial objects that 
act as reference points in the sky.  The International Celestial Reference Frame 
(ICFR) is commonly used in fundamental ephemerides of solar system objects. 

In general, an object may be moving with respect to a coordinate system, and that 
coordinate frame may be moving or rotating with respect to other frames.  There-
fore, in order to be definite, it is necessary also to specify the time coordinate to 
which spatial coordinate values refer.  

The apparent state of a celestial object also depends on the state of the observer, 
as well as the coordinate frame to which observation is referred.  Such relative 
motions are governed by theories of relativity, discussed in the chapter on Space-
time.  Coordinates may also include the effects of other distortions or aberrations 
that may require compensation.   

 The MPG standard epoch is J2000, defined by the positions of the Earth's equa-
tor and equinox on Julian Day 2451545.0, or January 1, 2000 at 12:00:00.  Trans-
lation among other standard reference frames relies on standard models of pre-
cession and nutation to determine spatial coordinates at given epochs. 
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7.2 Two-Body Motion 

Johannes Kepler observed from a study of the positions of planets that their  mo-
tions in the solar system appeared to exhibit three behaviors that we now call Ke-
pler’s laws, published in 1609.   

K-1:  The orbits of the planets are ellipses, with the Sun at one focus of the 
ellipse.  

K-2:  The line joining the planet to the Sun sweeps out equal areas in equal 
times as the planet travels around the ellipse.   

K-3:  The ratio of the squares of the periods of revolution for two planets is 
equal to the ratio of the cubes of their semimajor axes. 

Kepler’s theory was later refined by Isaac Newton to account for the mutual per-
turbations among the bodies of the solar system.  Newton published his three 
laws of motion and law of universal gravitation in 1687.   

N-1: Objects at rest remain at rest and objects in uniform motion remain in 
uniform motion unless acted upon by an external net force.   

N-2:  An applied force on an object is equal to the time rate of change of 
momentum of that object.   

N-3:  For every action, there is an equal and opposite reaction.   

N-UG:  Every object in the universe attracts every other body in the uni-
verse with a force directed along the line of centers of the two objects 
that is proportional to the product of their masses and inversely pro-
portional to the square of the distance between them, 

 
1 2
2

G m m
F d=  (7-1) 

In this relation,G  is the Newton gravitational constant, 1m  and 2m  are the 
masses of the primary and secondary bodies, and d  is the distance between them. 

It is now understood that Kepler’s laws only apply to the so-called two-body 
problem, where the number of objects interacting in space is limited to two.  As 
will be discussed later in the chapter, the extension of Newton’s laws to more 
than two bodies bears no simple solution, and generally requires numeric meth-
ods for determining pos itions over time.  
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Because the laws of Kepler and Newton agree in two-body theory, the orbits they 
describe are often referred to as Keplerian, with Newtonian theory reserved to 
describe multiple body interactions without relativistic effects applied.   

There are a number of cases in which the effects of multiple bodies may be 
treated as slight perturbations superimposed on two-body theory.  Such is the 
case, for example, in approximating positions of planets relative to the Sun, the 
Moon relative to Earth, and spacecraft in solar and planetary orbits. 

7.2.1 Keplerian Motion 

Let it now be assumed here that there are only two bodies whose motions are to 
be characterized.  The more massive of these will be designated the primary, and 
the other, the secondary.  If 1r  is the position vector of the primary with respect 
to an arbitrary inertial origin, 2r  is that of the secondary, 2 1= −r r r  is the vector 
from primary to secondary, and | |r = r  is its magnitude, then the equations of 
force at the two bodies, by Newton’s laws, are 

 

1 2
1 1 3

1 2
2 2 3

G m m
m r

G m m
m r

=

= −

r r

r r

&&

&&
 (7-2) 

The body mass on the left-hand side of each equation above divides out 
with that on the right-hand side.  Consequently, subtracting the two gives 

 
1 2

2 1 3
( )G m m

r
+

= − = −r r r r&& && &&  (7-3) 

Newton's law for a single body moving around a primary is therefore 

 3r
m

= −
r

r&&  (7-4) 

where 1 2( )G m mm = + .  All three of Kepler’s laws follow from this expression. 

Similarly, adding the two equations of Eq.(7-2) shows that the net force acting on 
the pair as viewed in an inertial frame is zero, 

 1 1 2 2m m+ =r r 0&& &&  (7-5) 
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Integration of this equation therefore gives the net momentum of the pair, which 
is constant.  A second integration gives the motion of the center of mass, or bary-
center, which is located at 

 1 1 2 2
0

1 2
c

m m v tm m
+= = ++

r rc r  (7-6) 

The barycenter is non-accelerating, and is therefore an inertial frame in which the 
position and velocity of the bodies and center of mass can be determined at all 
times from initial positions and velocities.   

If the origin of the system is taken to be the barycenter, then 

 2
1 2

1

m
m= −r r  (7-7) 

In this frame, the position vectors satisfy 
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 (7-8) 

Substitution of Eq.(7-9) into Eq.(7-2) produces Newton’s law for each 
body moving about the barycenter, 

 

3
2 2

1 13 2 3
1 2 1

3
1 1

2 23 2 3
1 2 2

( )

( )

G m G m
r m m r
G m G m
r m m r

= = − +

= − = − +

r r r

r r r

&&

&&
 (7-9) 

Further, Eqs. (7-4) and  (7-9) appear to be the same when the proper associations 
between radial vectors and gravitational constants are made.   
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 (7-10) 

They may each be solved separately, as if the system were uncoupled.  But, of 
course, all three pertain to the same system, and orbit in synchrony.   
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It suffices, then to concentrate on only one of the forms, and the one chosen here 
is Eq.(7-4).  The remainder of the treatment in this section focuses on characteris-
tics of the trajectory of the secondary with the primary at the origin. 

7.2.2 Angular Momentum 

The angular momentum per unit mass is the vector product of the position and 
velocity vectors, or  

 2h r q
= ×
=

h r r&
&  (7-1) 

where q&  denotes the angular rate of the secondary as viewed at the primary.   If 
the angular rate is negative, the motion is said to be retrograde in that reference 
frame. 

In Newtonian two-body physics, the derivative of this vector is zero, 

 3r
m= × + × = − × + =h r r r r r r 0 0& && & &  (7-2) 

since the cross product of a vector with itself is the zero vector.  Consequently, 
the angular momentum is constant, and thus conserved along the trajectory1.  The 
trajectory is therefore planar, since the h  vector is perpendicular to both position 
and velocity and constant everywhere along the trajectory.  

The magnitude of the momentum satisfies the relationship | |p p p ph r v= × =r v , 
which follows since the position and velocity vectors are perpendicular at this 
point.   The angular rate for a Keplerian trajectory satisfies the relation 

 2
h
rq =&  (7-3) 

As a further consequence of constant momentum, if f  is the angle between posi-
tion and velocity vectors, then at any two points along the orbit, 

                                                 
1 This characteristic is equivalent to Kepler’s second law, since the differential area of between two 
arcs separated in time by dt  and in angle by dq is equal to /2r r dq⋅ .  The time rate of change 

of area swept out by an arc is therefore /2h , which is constant. 
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 1 1 1 2 2 2sin sinr v r vf f=  (7-4) 

Alternately, j  could be defined as the angle between the velocity vector and a 
line perpendicular to the position vector oriented such that / 2j p f= − .  This 
angle, called the flight angle, satisfies 

 1 1 1 2 2 2cos cosr v r vj j=  (7-5) 

Both the rv angle f  and the flight angle j  are commonly denoted by the Greek 
letter phi, so it behooves the reader to determine from the context of usage which 
applies. 

The total angular momentum about the center of gravity of the closed system is 
conserved, so 

 1 1 2 2m h m h mh+ =  (7-6) 

where m is the equivalent mass in the primary-centered system and the ih  are the 
angular momentums per unit mass of each body. 

 2 2 2
1 1 2 2m r m r m rq q q+ =& & &  (7-7) 

Substituting the distances values implied in Eq.(7-8), dividing out the common 
angular rate, and simplification produces the result 

 1 2

1 2

m m
m m m= +  (7-8) 

This is the so called reduced mass of the system.  It is less than either of the two 
masses comprising it, and is such that the motion of either body, with respect to 
the other as origin, is the same as a body having this mass moving with respect to 
the barycenter and acted upon by the same force. 

7.2.3 Orbital Parameters 

Although it is not done here, it is fairly straightforward2 to show that the integra-
tion of Eq.(7-4) yields a conic trajectory in space (circle, ellipse, parabola, or hy-
perbola), in which the position of the secondary body at any given time can be 
                                                 
2 See, for example, the solution of the Lagrange equations of motion given in [Irving & 
Mullineux1959].  Later in this chapter, this claim is validated by showing that a conic trajectory 
satisfies Eq.(7-4). 
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computed from m  and a set of six orbital parameters.  One such set is comprised 
of the components of the position and velocity vectors at a given time.  Another 
is the set of osculating elements that specify the position of the body at a refer-
ence epoch and the size, shape, and orientation of the orbit in space.  A typical 
set of osculating elements is shown in Figure 7-1, and defined below: 

 

pericenter distance
eccentricity of trajectory
inclination of trajectory plane to reference plane
longitude of ascending node
argument of pericenter
epoch of pericenter

p

p

r
e
i

t
w

=
=
=

Ω =
=
=

 (7-9) 

The pericenter is the point in a trajectory that is nearest to the center of attraction, 
and is synonymous with periapsis in this case.  The distance from the primary to 
the pericenter is called the perifocal distance.  Eccentricity is a parameter that 
specifies the shape of the conic section.  Inclination is the angle between the ref-
erence plane and the orbital plane, positive when the pericenter is in the northern 
hemisphere of the reference frame.  The ascending node is that intersection of the 
conic with the reference plane that carries the trajectory from the southern to 
northern hemisphere, and the argument of pericenter is the angle from the node 
to the pericenter, and is not defined for a circular orbit.  The semi-major axis a  
of the conic is often given rather than the pericenter distance pr , and the longi-
tude of pericenter v w= Ω +  is sometimes given instead of w .  The orbital pe-
riod (of elliptical orbits) and mean motion are often of interest, but are not usu-
ally cited as one of the six elements needed to define the orbit. 

Anomaly  is the term that astronomers use to denote an angle.  The angle q  meas-
ured at the primary body, from the pericenter to the orbiting body is called the 
true anomaly.  The mean anomaly  is the angle M  from pericenter to a hypotheti-
cal body moving with a constant angular velocity n  that is equal to the orbiting 
body's mean orbital motion. 

 ( )pM t t n= −  (7-10) 

The mean anomaly of a circle or ellipse is simply an angle that marches uni-
formly in time from 0 to 360 degrees during one revolution.  It is defined to be 0 
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degrees at periapsis, and therefore is 180 degrees at apoapsis.  The mean motion 
is the constant rate at which the angle accumulates over time. 

The eccentric anomaly  is another angle that has an easily understood and physi-
cal interpretation for elliptical orbits that simplifies the relationship between 
mean and true anomalies, as described later in this chapter. 

The concepts of mean and eccentric anomalies are also extended to parabolic and 
hyperbolic orbits, as they are useful mathematical concepts for interrelating or-
bital time and position.  However, they bear no (easily assimilated) geometric 
significance otherwise in these cases. 

The SPICE function OSCELT takes as its input the gravitational parameter m , a 
time t , and the trajectory state vector ( , )r v  at this time; it returns a set of orbital 
elements similar to those of Eq.(7-9) above, but in which pt  is replaced the pa-
rameter M , the mean anomaly at this epoch.  The remainder of this discussion 
relates to the methods by which the elements are calculated from the given state. 

In 1710, Jacob Hermann discovered a vector which has since been rediscovered 
and refined many times since.  Today it is referred to as the Laplace-Runge-Lenz 
vector, which in a particular normalized form, is called the eccentricity vector.  It 
is given by 

 rm
×= −v h re  (7-11) 

Its direction is along the major axis of the conic toward pericenter, and its magni-
tude is the eccentricity, | | e=e .  This expression makes it possible to determine 
the eccentricity and the direction of pericenter from any given state vector ( , )r v  
along the orbit. 

If the eccentricity is not unity, the semimajor axis is related to the state via a rear-
rangement of the vis-viva equation (given later in Eq.(7-31)), as 

 
122 va r m

− = −     (7-12) 

The periapsis and apoapsis distances are then likewise determined by 

 
( )
( )
1
1

p

a

r a e
r a e

= −
= +  (7-13) 
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The angular momentum is perpendicular to the plane of the new orbit.  The incli-
nation is the angle this vector makes with the reference frame z-axis, commonly 
denoted k .  It can be found using the SPICE function 

 VSEP( , )i = h k  (7-14) 

The node vector n  is perpendicular to both the reference plane and the angular 
momentum vector, pointing toward the ascending node.  It is given by 

 = ×n k h  (7-15) 

If the inclination is zero (or p ) this vector is of zero length; the SPICE conven-
tion in this case is to set (1,0,0)T=n . 

The longitude of the ascending node is the angle between the x-axis and this vec-
tor, which may be computed by 

 arctan( , )x yn nΩ =  (7-16) 

The arc tangent function used here computes the quadrant-corrected angle whose 
first component is in the x-direction, and the second, in the y-direction. 

The argument of pericenter is the angle between the node vector and the eccen-
tricity vector, positive if the pericenter lies in the direction of ×h n , which lies in 
the orbital plane. 

 sgn( )VSEP( , )w = ×e h n e ni  (7-17) 

If negative, this angle is sometimes augmented by 2p  in order to provide a pos i-
tive result.  This element is undefined for circular orbits, by SPICE convention it 
is set to zero. 

The fina l element is the true anomaly at the epoch of the given state.  The true 
anomaly q  is the angle measured from the pericenter to the given position, posi-
tive in the clockwise direction about h .  In order to calculate this angle, two unit 
vectors are used: 

 | |
arctan( , )

x

y

x y

e

q

=
×= ×

=

eu
h eu h e

r u r ui i

 (7-18) 
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The relationships between true, eccentric, and mean anomalies are discussed a 
little later on. 

An alternate method of calculation of the true anomaly of non-circular orbits is 
by inverting the conic formula, appearing later, in Eq.(7-20), which gives 

 1 (1 )
cos pe r r

erq −  + −  = ±   
 (7-19) 

The method given in Eq.(7-18), however, avoids this ambiguity. 

The process of determining the state of a trajectory at any given time using the 
gravitational parameter and orbital elements is called propagation of the conic.  
The SPICE utility CONICS embodies this process; given the gravitational con-
stant, orbital elements, and time at which the state is to be computed, it returns 
the state vector.   The method of propagation is different for the different types of 
conic sections, and is found in the discussions of each type. 

7.2.4 Trajectories 

As mentioned earlier, the motion of the secondary with respect to the primary 
takes the form of a conic section.  This claim will now be validated.  The claim is 
that, when viewed in the orbital plane with the primary at the origin and major 
axis along the line from primary to pericenter, the motion in polar coordinates is 
described by the familiar conic formula  

 
(1 )
1 cos

pe r
r e q

+
= +  (7-20) 

Typical plots of conic trajectories are illustrated in Figure 7-2.  The numerator 
(1 ) pe r+  of the polar equation is known as the semi-latus rectum of the conic 
section; it is the distance from the primary to the trajectory in a direction perpen-
dicular to the major axis.  When 0e = , the orbit is circular; when 0 1e< < , the 
orbit is an ellipse; when 1e = , the trajectory is a parabola; and when 1e > , the 
trajectory is hyperbolic. 

  The Cartesian vector form of the conic trajectory is 



Fundamentals of Orbital Mechanics 
 

13 

 
cos
sin

0
r

q
q

   =      

r  (7-21) 

The velocity vector is the derivative of this vector, which may be found using 
elementary calculus and the relation for q&  given by Eq.(7-3) to be 

 2

sin sin
cos cos(1 ) (1 )
0 0p

h e ee r e a

q q
mq q

   − −      = + = +   + −            

v  (7-22) 

Differentiation of the velocity and reapplication of Eq. q  give the accelera-
tion, 

 
2

2

cos
sin(1 )
0p

h
e r r

q
q

 −  = = − +     

a r&&  (7-23) 

Substitution of this result into Eq.(7-4) indicates that the angular momen-
tum must satisfy  

 (1 ) ph e r m= +  (7-24) 

Therefore, the secondary trajectory viewed by the primary is a conic sec-
tion whose angular momentum is given above. 

The orbital position and velocity in Cartesian coordinates are then 

 
cos sin

(1 ) sin cos1 cos (1 )
0 0

p
p

r e ee r e

q q
mq qq

   −   +    = = +   + +            

r v  (7-25) 

7.2.5 Euler Angles 

The trajectory plane frame of reference may be transformed to the reference 
frame of a given set of  orbital elements by a rotation of coordinates.  Leonard 
Euler showed that any rotation in 3-space can be decomposed into the product of 
three elemental rotations.  Each rotation is quantified by an identified axis of the 
frame and an angle of rotation about this axis.  The set of axes and the corre-
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sponding angles are called the Euler angles of the transformation.  Euler angles 
provide a convenient means of representing the spatial orientation of any frame 
of the space as a composition of rotations from a reference frame. 

Multiplying vectors in the trajectory plane frame by the following rotation matrix 
transforms them into vectors in the reference frame of the orbital elements. 

 3 1 3[ ] [ ] , [ ]i w= −Ω ⋅ − ⋅ −R  (7-26) 

This formula may be found in the Explanatory Supplement to the Astronomical 
Almanac [Seidelmann1992].  The notation [ ]nf  above denotes a rotation about 
the axis designated as n  by an angle f .  It is implemented in the SPICE function 
ROTATE.  The standard assignment of axes is x = 1, y = 2, z = 3.  The combined 
rotation matrix implementing a given set of Euler angles is returned by the 
EUL2M function. 

7.2.6 Total Energy and Orbital Shape 

The total energy of the secondary in this configuration is the sum of its kinetic 
and potential energies, or 

 
1 22 21 1

2 2tot
G m m m

mv m vr r
m

e = − = −  (7-27) 

Here, r  and v  denote, respectively, the distance from the secondary to the pri-
mary and the velocity of the secondary in the trajectory plane relative to the pr i-
mary.  Note that the reduced mass m  is used in computing the system kinetic 
energy. 

By Newton’s law. this total energy is constant, and may be equated to its value 
when the secondary is at pericenter.  With substitution of p ph r v= , it is 

 

2

2
2

( )2

( )2

p
tot

p

pp

v mr
h mrr

me

m

= −

= −
 (7-28) 

The total energy vanishes for an orbit having the same pericenter but whose an-
gular momentum takes the value 
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 2par ph rm=  (7-29) 

The trajectory with zero total energy is parabolic , with 1e = .  It represents the 
case in which the secondary’s kinetic energy is just sufficient to escape the at-
traction of the primary.  Escape velocity3 for an object at pericenter is defined as 
the tangential rate required to achieve this state, 

 
2

esc
p

v r
m

=  (7-30) 

The escape velocity of an object at rest on a body is found using the above ex-
pression, but with the perifocal distance set equal to the body radius. 

When the total energy is negative, the trajectory is bound and the orbit is ellipti-
cal.  When positive, the trajectory is unbound and the orbit is hyperbolic. 

 By equating the relationships in Eqs.(7-27) and (7-28), dividing out the secon-
dary mass, and rearranging terms, the following equation results: 

 2 2 1
p

ev r rm − = −     (7-31) 

This equation, known as the vis-viva equation and also as the orbital energy con-
servation equation, relates the velocity v  at any point of distance r  along the 
trajectory to the excess orbital momentum, which has been related to eccentricity 
by the relationship 

 
2 2

2 1 1
par p

h he h rm
 = − = −    (7-32) 

This form is not obvious, but results when the magnitude of e , as given in 
Eq.(7-11), is computed and then some vector algebra, the definition = ×h r v , 
the vis-viva equation above, and Eq.(7-29) are applied.  Eccentricity can also be 
written in the form 

                                                 
3 Since the quantity of reference is a scalar, the more proper term would be escape speed.  The term 
is retained, however, for historical reasons.  Escape velocity is often misunderstood to be the speed 
a powered vehicle (such as a rocket) must have in order to leave orbit.  However, this is not the 
case. It is the speed a bullet fired from the surface would have to travel (ignoring the effects of 
drag) to leave orbit, but it is not the speed required for a rocket or other object in powered flight. 
An object under power could leave the Earth's gravity at any speed, assuming it had enough fuel. 
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2

1p pv r
e m= −  (7-33) 

The semimajor axis a of the trajectory is related to the pericenter distance by 

 1
pra e= −  (7-34) 

The semimajor axis is thus positive for ellipses and circles, infinite for the parab-
ola, and negative for the hyperbola.  The vis-viva equation expressed using a is 

 ( )2 2 1v r am= −  (7-35) 

The difference in squared velocity at any two points on the trajectory is thus 
given by 

 2 2
2 1

2 1

1 12v v r rm − = −     (7-36) 

In particular, the difference between squared velocities at periapsis and apoapsis 
of an elliptical orbit is 

 2 2
2

4
(1 )p a

e
v v a e

m
− = −  (7-37) 

Further, the velocities at periapsis and apoapsis are 

 

( )
( )
1
1
1
1

1
1

p

a

p
a

ev a e
ev a e

v e
v e

m

m

+= −
−= +

+= −

 (7-38) 

The semimajor axis and angular momentum are thus related by 

 2(1 )p ph r v a em= = −  (7-39) 

7.2.7 Relationship Between Mean and True Anomaly 

The constant angular momentum 2h r q= &  may be equated to its value as given 
in Eq.(7-20) to give 
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2

2 (1 )(1 ) 1 cos
p

p
r eh e r r em q qq

 +  = + = =  +  
& &  (7-40) 

which, upon rearranging terms, is 

 3 3 2(1 ) (1 cos )pe r e
m q

q=+ +
&

 (7-41) 

This relation may be integrated directly to yield a linearly growing left-hand side, 

 3 3( ) ( ) (1 )p p
p

n t t t t e r
mk − = − +  (7-42) 

where the constant of integration is chosen to make the quantity zero at pericen-
ter.  A constant parameter k  has been introduced as the proportionality to the 
mean motion, to be determined.   

The integral of the right-hand side can also be calculated in closed form, by man-
ual means or by a software tool such as Mathematica, to yield 

 
( )1

2
22 3/2

( 1)2tanh tan sin21
( 1)(1 cos )( 1)

e
eeM e ee

q
q

k q

−  −    −= − − − +−  (7-43) 

No constant of integration of the right-hand side appears, as the expression is 
zero at pericenter. 

This equation is the generalized Kepler equation that relates mean anomaly to 
true anomaly.  The reader will note, however, that, as it is expressed above, there 
are imaginary terms when 1e <  and a possible singularity at 1e = .  For ellipti-
cal and parabolic orbits, then, further manipulations of Eq.(7-43) are required in 
order to transform this result into real, nonsingular forms.  Each case is consid-
ered separately in the paragraphs below. 

It may also be noted that, while it may be simple enough in principle to deter-
mine the orbital time that corresponds to a given true anomaly, the reverse solu-
tion, for q  given t , involves solving a transcendental equation.  Kepler’s equa-
tion is therefore generally solved by iterative means.  Fortunately there are meth-
ods for doing this that converge rather quickly. 
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7.2.8  Elliptic Orbit Relationships 

The form of Eq.(7-43) for elliptical orbits ( 1)e <  may be transformed by dint of 
circular and hyperbolic trigonometric transformations into 

 ( )
1

3 3

1
2 3 / 2

( ) (1 )
1 12tan tan 1 sin1 2(1 )

p
p

t t e r
e e eee

m

q q−

− +
   −   = − −       +   −

 (7-44) 

(The author made this transformation using Mathematica, but laborious manual 
methods produce the same result.)  This equation is sufficient to relate mean and 
true anomalies; however, some simplification can yet be made. 

Motion in this case is periodic.  As q  traverses an orbit, the parenthesized term 
of the right-hand side above varies from 0  to 2p  radians, so the period T satis-
fies 

 3 3 2 3 / 2
2

(1 ) (1 )p
T e r e

m p=+ −  (7-45) 

or 

 
3 3

32 2(1 )
rp aT ep p mm= =−  (7-46) 

The mean motion is thus equal to 

 
3

3 3
(1 )2

E
p

e
n T r a

m mp −
= = =  (7-47) 

The k  parameter appearing in Eq.(7-43) for this case is 2 3/2(1 )ek −= − . 

For elliptical orbits, the eccentric anomaly  is defined as the angle E , shown in 
Figure 7-3, measured at the center of the ellipse, from the pericenter to the point 
on the circumscribing auxiliary circle of radius a  from which a perpendicular to 
the major axis would intersect the orbiting body.    

Since the ellipse pericenter is (1 )pr a e= − , the distance from the ellipse center 
to the focus is a e .  The geometry is thus such that the eccentric and true anoma-
lies are related by 
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 cos cosa E a e r q= +  (7-48) 

Substitution of Eq.(7-20) in the above and simplification produce the following 
relationship between true and eccentric anomalies: 

 
cos

cos 1 cos
e

E e
q
q

+
= +  (7-49) 

This may also be written in the inverted form 

 
cos

cos 1 cos
E e
e Eq

−
= −  (7-50) 

Substitution of q  from Eq.(7-50) into Eq.(7-44), application of trigonometric 
identities, and simplification yield the familiar form of Kepler’s equation for el-
liptical orbits: 

 

1
3

sin
( )E p

E

M E e E
M n t t

n a
m

= −
= −

=

 (7-51) 

To determine the position at a given a time t , the mean anomaly M  is computed, 
from which the eccentric anomaly E  must be found in order to determine the 
true anomaly q  via Eq.(7-50).  Much effort has been expended over the last few 
hundred years in attempts to invert the Kepler equation in a closed form expres-
sion.  One such expression, credited to Friedrich Wilhelm Bessel in 1817, is 

 
1

2 ( )sin( )k
k

E M J ke k Mk
∞

=
= + ∑  (7-52) 

in which ( )kJ x  is the Bessel function of the first kind and order k.  However, this 
form converges so slowly at higher eccentricities that iterative root-finding meth-
ods are more desirable. 

Newton-Raphson iteration is an efficient method for solving for the eccentric 
anomaly, as follows.  Let ( ) sinf E E e E M= − −  for given M  and e  be the 
function whose root is desired.  The iteration begins using the first two terms of 
Eq.(7-52), or 0 sinE M e M= + , and subsequent estimates of the root are given 
by the recursion 
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 1
sin( )

1 cos( )
k kk

k k k
kk

E e E Mf EE E E Ef E+
− −

= − = −′ −  (7-53) 

Convergence is quadratic, and thus achieves high accuracy after only a few steps. 

The orbital position and velocity in Cartesian coordinates relative to the center of 
the orbital ellipse, with x-axis in the direction of pericenter is then 

 
2

2 2

cos sin
1 sin 1 cos

0 0

E
E E

E E
a n

a e E e Er

−         = − = −               

r v  (7-54) 

The position equation follows from the geometry shown in Figure 7-3.  The polar 
form of the position equation is 

 (1 cos )r a e E= −  (7-55) 

The velocity equation results upon differentiating the position equation and sub-
stituting E&  found by differentiating Eq.(7-51)  

 1
1 cos

EnE e E r a
m= =−

&  (7-56) 

The position and velocity vectors in Cartesian coordinates relative to the primary 
are easily related to Eq.(7-54), 

 
2

2 2

cos sin
1 sin 1 cos

0 0

E
E e E

a n
a e E e Er

− −         = − = −               

r v  (7-57) 

 

7.2.9 Parabolic Orbit Relationships 

For a parabolic orbit ( 1)e = , the Kepler equation given in Eq.(7-43) is indeter-
minate.  However, a tool such as Mathematica, or judicious application of 
L’Hospital’s rule  in taking the limit of this expression as 1e → , profuse use of 
trigonometric identities, and algebraic simplification produce the reduced result 
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 ( )1 3
3 3

1 1( ) tan tan2 2 3 22p
p

t t r
m q q− = +  (7-58) 

Again, this equation is totally sufficient to relate time and orbital position;  how-
ever, it is traditional to introduce an intermediary term to simplify computation. 

Unfortunately, the elliptical orbit eccentric anomaly does not translate at unit ec-
centricity to a meaningful intermediary formula.  Instead, the parabola eccentric 
anomaly is defined to be 

 tan 2E q=  (7-59) 

The same notation is used here as appeared in the elliptical case.  However, no 
confusion should arise, since these cases are always separately considered.  Un-
der this convention, the parabolic trajectory Kepler equation is 

 

1
3

3

( ) 2

3

p
p

M t t r
EE

m= −

= +
 (7-60) 

The time coefficient of the right-hand side is defined to be the parabolic trajec-
tory mean motion, 

 1
32P
p

n r
m=  (7-61) 

The k  of Eq.(7-43) in this case is ½. 

In this case, the Kepler equation Eq.(7-60) does have a closed-form solution, viz., 

 
( )( )
( )

2/31/3 2 1/3

1/32

2 3 4 9 2

3 4 9

M M
E

M M

− + + −
=

+ +
 (7-62) 

Newton-Raphson iteration may be used in this case, if desired.  When applied to 
the function 3( ) / 3f E E E M= + −  it produces the recursive, rapidly converg-
ing formula  

 
3

1 2
/ 3

1
k k

k k
k

E E ME E E+
+ −= − +  (7-63) 
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Neither E  nor Pn  carry physical significance; they are significant merely as 
means to express the orbital time relationship.  The tangent half-angle formula 
applied to Eq.(7-59) produces the polar form of the trajectory as a function of 
eccentric anomaly, 

 2(1 )pr r E= +  (7-64) 

The state vectors are 

 

2

2

1 2
2 11
0 0

p P
p

E Er n
r E E

   −      = =   +            

r v  (7-65) 

The velocity is found by differentiating the position and setting 

 21
HnE E= +

&  (7-66) 

which follows from Eq.(7-60). 

7.2.10 Hyperbolic Orbit Relationships 

For hyperbolic trajectories ( 1)e > , it may be seen from Eq.(7-20) that the true 
anomaly range is limited to the interval max max( , )q q−  where 1

max cos ( 1/ )eq −= − .  
Analytic geometry teaches that the projection of incoming and outgoing asymp-
totes intersect at a distance of /( 1)pe r e −  from the focus in the pericenter direc-
tion, and that the angle between asymptotes is 1

max2( ) 2cos (1/ )ep q −− = .  The 
turning angle, or angle between incoming and outgoing asymptotes, is 

1( 2cos (1/ ))ep −− . 

The time-vs.-anomaly relationship given in Eq.(7-43) may be used directly, al-
though it is traditional to simplify it using a suitable definition of the hyperbola 
eccentric anomaly  and mean motion.  In this case, the eccentric anomaly is de-
fined as 

 1 cos
cosh 1 cos

e
E e

q
q

−  +  =  +  
 (7-67) 

This is similar in form to Eq.(7-49), but with hyperbolic cosine replacing the cir-
cular cosine.  The true anomaly is then 
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cosh

cos 1 cosh
E e

e Eq
−

= −  (7-68) 

It is notable that E  has singularities at true anomaly values satisfy-
ing ( )1cos 1/eq −= − .  This asymptotic behavior is familiar to those having stud-
ied hyperbola  characteristics in descriptive geometry. 

Substitution of Eq.(7-68) in Eq.(7-43) and reduction using trigonometric identi-
ties produce the classic relation 

 3

3

( ) sinh

( 1)
H p

H
p

n t t M e E E

e
n r

m
− = = −

−
=

 (7-69) 

The k  parameter appearing in Eq.(7-43) for this case is 2 3/2( 1)ek −= − .  Nei-
ther E  nor Hn  carry physical significance; they are significant merely as means 
to express the orbital time relationship.  

Newton-Raphson iteration applied to the function ( ) sinhf E e E E M= − −  pro-
duces the recursive rapidly converging formula  

 1 1
1

1

sinh
cosh 1

k k
k k

k

e E E M
E E e E

− −
−

−

− −
= − −  (7-70) 

Eq.(7-69)  evaluated at small E  gives /( 1)E M e≈ − , and evaluated at large E  
gives 1sinh ( / )E M e−≈ .  Thus, the iteration above , if begun with the starting 
value 1

0 min( /( 1),sinh ( / ))E M e M e−= − , achieves high accuracy in only a few 
steps. 

The polar form of the hyperbola expressed in terms of the eccentric anomaly is 

 
cosh 1

1p
e E

r r e
−

= −  (7-71) 

The position and velocity vectors in the orbital plane, expressed in terms of ec-
centric anomaly are 

 ( )22 2

cosh sinh
1sinh 1cosh1 1
0 0

p pH

e E E
r rne E e Ee r e

− −         = − = −   − −            

r v  (7-72) 
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The velocity is found by differentiating the position and setting 

 cosh 1
HnE e E= −

&  (7-73) 

which follows from Eq.(7-69). 

7.2.11 Higher-Order State Derivatives 

SPICE toolkit functions, such as SPKEZ, typically return state vectors, i.e. posi-
tion and velocity, of objects in the solar system.  It is sometimes the case, how-
ever that an MPG algorithm needs to estimate a higher order derivative approxi-
mately to assist in its internal4 processes.  This section therefore presents meth-
ods for calculating higher order derivatives of Keplerian orbital functions. 

Differentiation of a function ( )qq  involving the true anomaly may apply the 
chain rule, replacing q&  by 2/h r , so that  

 2
( ( )) ( ) ( )d d dh
dt d dr
q q qqq q= =q t q q&  (7-74) 

Repeated applications of this rule will result in expressions having no derivatives 
of the true anomaly.  It is therefore possible to express any time derivative of a 
function of q purely as a function of q . 

Further, in foregoing three sections above, the velocity vector in each case was 
found by differentiating the position vector, which was expressed as a function of 
the eccentric anomaly of that trajectory type, using the chain rule and the time 
derivative of the eccentric anomaly found from Kepler’s equation, 

 
0( ) ( )
( )

( )

n t t f E
n f E E

nE f E

− =
′=

= ′

&

&
 (7-75) 

The derivative E&  contains no derivatives of E , so the time rate of change in po-
sition depends only on angular quantities found via solution to Kepler’s equation. 

                                                 
4 Such approximations are not allowed to propagate into output predictions when accuracy re-
quirements would be compromised. 
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 The same process as used to find velocity extends to any function, vector or oth-
erwise, as 

 ( ) ( )( ) ( )
d E d Ed nE Edt dE dE f E= = ′
q qq &  (7-76) 

Again, no derivatives of the eccentric anomaly appear in the result.  Therefore, 
any derivative of a function of E  may be expressed purely as a function of E .  

Still further, all functions involving higher-order derivatives of the position vec-
tor may be expressed in terms of position and velocity because of Eq.(7-4).  For 
example, in order to find the acceleration vector r&&& , one merely notes that 
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 (7-77) 

Extension of this practice to higher order derivatives follows by induction.  By 
such means, then, all higher-order derivatives of conic section positions can be 
expressed as functions of positions and velocities only.    

Positions and velocities may further be expressed only as functions of input or-
bital parameters and time, as related to either true or eccentric anomalies. 

7.3 Perturbed Conic Representations 

The orbital elements describing Keplerian motion provide an excellent reference 
for describing orbital characteristics.  However, there are generally other effects 
that perturb a body’s motion relative to a reference frame, which necessitate ad-
justments to the orbital theory governing the object’s motion. 

Approximations of the positions and velocities of trajectories may often be ap-
proximated using Kepler’s laws and associated osculating elements evolving 
slowly over time.  Kepler’s laws are presumed to apply at a given instant to in-
stantaneous element values.  Instances of such trajectories are embodied in sev-
eral SPICE ephemeris types discussed later in this chapter.  The discussion below 
treats the method by which solutions are generated. 
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Perturbations may be classified according to how they affect the Keplerian ele-
ments.  Secular variations represent deviations that are long-term, steady non-
periodic changes over time.  Short-term periodic effects are deviations whose 
extents are much less than the orbital period.  Long-term periodic effects are de-
viations whose period is much longer than the orbital period.  Typical analyses 
treat secular and long-term periodic orbital perturbations, but precise orbit deter-
mination requires that short-term effects be included as well. 

7.3.1 Other-Body Perturbations 

The presence other bodies in an orbital system upsets the characteristics of the 
Keplerian trajectory.  If the Keplerian elements are only slightly altered, the ef-
fects due to each body may often be treated separately and superimposed on 
those elements affected.  In such cases, the gravitational effect of each perturbing 
body may be treated as a force acting on the angular momentum vector of the 
orbit.  This force generally causes periodic variations in all of the orbital ele-
ments and secular variations in longitude of the ascending node Ω , argument of 
periapsis w , and mean anomaly M . 

7.3.2 Non-Spherical Primary Perturbation 

In the foregoing two-body theory, it was assumed that the gravitational potential 
of the primary body was spherically symmetric.  In actuality, this hypothesis fails 
for satellites in proximity to a primary that is neither spherical nor homogeneous 
in composition.  For Earth and many of the planets, the most dominant features 
are a bulge at the equator, a slight pear shape, and flattening at the poles.  The 
gravitational potential in such cases is expressed in terms of a spherical harmonic 
series, given by 

 ( )
2

( , ) 1 (sin )
k

k k
k

RU r J Pr r
mf f

∞

=

  = −  ∑  (7-78) 

Here, GMm =  is the gravitational parameter of the primary, R is its equatorial 
radius, r  is the distance to the orbiting object, f  is the primary-centric latitude, 
and ( )kP x  is the Legendre polynomial of degree k .  The coefficients kJ  in this 
expansion are called zonal harmonics. 

The non-spherical gravitational potential of an oblate primary, in which only 2J  
is assumed present, causes a periodic variation in all of the orbital elements, but 
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the dominant effects are secular variations in longitude of the ascending node and 
argument of perigee.  The secular rates of change have been calculated to be 

 

2
2

2
2

2

3 cos2 (1 )
3 (4 5sin )4 (1 )

p

p

Rn J ir e
Rn J ir ew

 Ω = −   + 
 = −  + 

&

&
 (7-79) 

These characteristics are sometimes found useful in mission design, where the 
rates of these parameters may be chosen to enhance performance, as discussed 
later in this chapter (see the Orbital Types section). 

7.3.3 Atmospheric Drag Perturbation 

Drag is the resistance encountered by an object that impedes its progress.  In 
space this resistance is typically due to a planetary atmosphere through which the 
object is moving.  This drag, of course, is greatest when leaving or entering the 
atmosphere, as at launch and reentry, the intensity decreasing as the atmosphere 
thins out.  Since drag depletes the kinetic energy of the object in space over time, 
the orbit will decay, spiraling inward, and, eventually , will undergo a reentry 
path, possibly disintegrating and burning up. 

If an Earth satellite is within about 120-160 km of the surface, atmospheric drag 
will cause reentry within a few days, with destruction occurring at about 80 km.  
However, if its apogee reaches 600 km, drag is so week that orbits usually last in 
excess of 10 years.    

The drag force DF  on an object acts in the direction opposite to the velocity vec-
tor.  It is given by the equation 

 1
2D DC v Ar= −F v  (7-80) 

In this equation, DC  is the drag coefficient, r  is the atmospheric density at the 
object’s altitude, v  is the object velocity relative to the atmosphere, v  is its 
magnitude, and A  is the object’s cross sectional area perpendicular to the veloc-
ity.  The drag coefficient depends on the geometric form of the object, and is 
usually determined by experimental means.  The drag coefficient of a sphere is 
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only about unity at Mach I, but it ranges from about 2 to 4 for typical Earth satel-
lites.   

Atmospheric densities at various altitudes and temperatures are available from 
standard tables.  The density changes are not uniform in altitude and even vary 
by about two orders of magnitude during periods of high solar activity at alti-
tudes in the range of about 500 to 800 km.  Satellites thus tend to decay more 
rapidly during periods of solar maxima than during solar minima. 

Approximate changes in semi-major axis, period, and velocity for a satellite of 
mass m  in nearly circular orbit have been found to be 
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 (7-81) 

The units of these changes are per revolution, not per second. 

The term /DB C A m=  in aerodynamic theory is called the ballistic coefficient.  
It represents how susceptible an object is to drag—the higher the number, the 
higher the drag.  The *B  term (called B-star) is an adjusted value of B  using the 
reference value of atmospheric density, 0r , given by *

0 /2B B r= , which has 
units of (Earth radii) -1.  B-star coefficients are given as constants for satellites 
listed in the NORAD Two-Line Element Sets, available from the Center for 
Space Standards & Innovation.  See the discussion of SPICE ephemeris Type 10 
for further information. 

It is interesting to note that the term “ballistic coefficient,” as used in the above 
context, is redefined as the inverse of this quantity when used in other contexts; 
similarly, object weight is sometimes used in place of object mass in this inverse 
definition.  The reader should thus take care to determine the context of usage in 
any  in application of interest. 
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7.3.4 Radiation Pressure Perturbation 

Radiation pressure is the force per unit area exerted on any surface by electro-
magnetic radiation.  For an object in the solar system, the radiation present is al-
most all due to sunlight.  The solar radiation pressure at Earth is about 1366  
watts/meter2, varying about 7% over the year, being higher in early January than 
in early July.  Since solar radiation is isotropic, its intensity follows the inverse 
square law with distance from the Sun. 

The acceleration of a body in space due to solar radiation will be 

 ( )2E Rc A r
m m AU

Φ
= =Fa u  (7-82) 

Here EΦ  is the solar flux at Earth, A is the cross section area of the body, Rc  is 
the its coefficient of reflection, m  is its mass, r  is its distance from the Sun, and 
u  is a unit vector in the direction of the flux.  

There is also a small force that may be generated from the body’s own black-
body radiation, which, if isotropic, amounts to a pressure of 
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where 8 2 45.67 10 ( )W m Ks − − −= ×  is the Stephan-Bolzmann constant, T is 
the body temperature, c  is the speed of light, and f  is a form factor that directs 
this radiation in a particular direction.  If the body were at 20 K° and the directiv-
ity were 6, the pressure would only amount to about 63 10−×  watts/meter2.   The 
body would have to be beyond thousands of AU before this pressure would be-
come significant with respect to solar radiation. 

While these effects are small, they are constantly present and capable of signif i-
cant orbital change when integrated over time.  The average energy per second 
(wattage) figure is mult iplied by a factor of 73 10×  over a year’s time. 

7.3.5 Planetary Positions 

Lower accuracy formulas for planetary positions have a number of important ap-
plications when the full accuracy of an integrated ephemeris, discussed in the 
next section, is not needed.  These may often be useful in  scheduling of observa-
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tions, antenna pointing, prediction of certain view period phenomena, and plan-
ning and design of spacecraft missions.  They are not currently used in MPG ap-
plications, as ephemerides are available for all of its missions.  However, they 
have been found useful in MPG development, where simulated trajectories were 
sufficient for validating algorithms under evaluation. 

E. Myles Standish, of JPL’s Solar System Dynamics Group, published [Yeo-
mans2006] a list of such elements and their rates for the nine major planets, in 
which the values given were adjusted to provide the best fit with actual positions 
derived from fundamental ephemerides.  Element values are provided at the 
J2000 epoch, with variation rates in units per century.  The interested reader may 
full details and data in the reference.  The method used to calculate a planet’s 
position is outlined below, and is typical of other modified Kepler methods. 

For a given UTC time of interest, compute the corresponding ephemeris time in 
seconds past J2000, and convert this to the number of centuries of 36525 days 
past J2000, T. 

Compute each of the planet’s six osculating elements using a linear formula, as 
0 0a a a T= + & .  The parameters given in Standish’s tables are 
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(7-84) 

Compute the argument of perihelion w v= − Ω  and mean anomaly 
2 cos sinM L bT c fT s fTw= − + + + , where coefficients for the final three 

terms are  provided only for the planets Jupiter through Pluto.  Reduce the 
modulus of M  to line in ( 180,180 )− ° ° . 

Solve Kepler’s equation ( ) sin180M E e Ep = − for E  in radians. 

Compute the state vector in the orbital plane using Eq.(7-57) , then convert it to 
ecliptic coordinates using Eq.(7-26), and thence into the ICRF (or J2000) frame 
using the rotation matrix 1[ ]e , in which e  is the J2000 obliquity 23.43928 .e = °  
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Standish provides tables of elements valid over the period -3000 BC to 3000 AD. 

7.4 Multiple-Body Motion 

The SPICE system accommodates ephemerides generated by any of a number of 
different models.  Some are numerically integrated, as will be described below.  
Some are based on analytic theories, and some are produced by unspecified 
methods, being within the purview of a particular space flight project. 

As of this writing, SPICE recognizes 18 different formats of ephemerides.  Some 
of these are polynomial fits to integrated states, while others are based on various 
orbital theories, perturbation theories, and modified conic propagation.  Those 
desiring more details may consult [SPK.REQ2004] for further information. 

The MPG does not discriminate the method by state vectors over time are pro-
duced, but, rather, generates its predictions faithfully based on the values it is 
given.  For this reason, MPG algorithms are completely oblivious to the theory 
by which the paths of interest are generated.  Those interested in the MPG ration-
ale, however, require an appreciation of more than the simple models discussed 
so far.  Completing this chapter with only a discussion of the two-body problem 
and some simple perturbations of it would short-change the subject of orbital me-
chanics drastically.  Yet, the full theory is too extensive for inclusion here.  A 
thumbnail sketch is warranted and is probably sufficient to engender an apprecia-
tion of the domain knowledge and technology spanning the subject, as well as the 
level of difficulty in computing the general solution. 

A precise description of the paths of objects in the solar system must not only 
account for Newtonian interactions among simple point-mass multiple bodies, 
but also non-point-mass objects and post-Newtonian5 perturbations of Einstein 
and others.  There have been several approaches to this problem, and the inter-
ested reader is referred to [Moyer1971] for history and details.   

This section touches briefly , though, on the method used to generate JPL’s high-
accuracy ephemerides.  In a nutshell, the multiple -body dynamical equations of 
motion that describe the gravitational physics of the solar system are a set of sec-
                                                 
5 Post-Newtonian modeling includes the effects of general relativity, with parameters added to al-
low least-squares regression for theoretical hypotheses concerning nonlinearity in superposition of 
gravity and space curvature produced by unit rest mass.  JPL ephemerides, however, are generated 
with these parameters set to values consistent with general relativity. 
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ond-order interrelated differential equations that must solved subject to given 
assumed values for initial distances, masses, and other parameters of the solar 
system.  As a result of many years spent in developing this system of equations 
and the software tools for solving them, in collecting and analyzing spacecraft 
tracking data, planetary radar data, and other solar system observations, and in 
subsequent regression of the input parameter values to obtain least-squares best-
fit observations, JPL has produced fundamental ephemerides of solar system ob-
jects and spacecraft that are highly accurate.  

The fundamental planetary and lunar ephemerides of the Astronomical Almanac, 
starting in the year 2003, were generated by JPL and designated DE405 and 
LE405.  They replaced JPL’s DE200 and LE200, which had been used in the 
Almanac since 1984.  Previous to 1984, fundamental ephemerides of the Alma-
nac were based upon analytical theories.  DE405 and LE405 were the results of 
least-squares adjustments to previously existing ephemerides using a variety of 
observed measurements, followed by a numerical integration of the dynamical 
equations of motion.  The reference frame for these ephemerides is the Interna-
tional Celestial Reference Frame (ICRF), discussed in the chapter on Coordinate 
and Reference Frames. 

In this exposition, the reader will no doubt become aware that the number of 
computations required in generating accurate ephemerides of solar system ob-
jects is immense.  The store containing the results is also immense.  It may be 
some consolation, then, to realize that once generated, the ephemerides never 
have to be recomputed (for the applicable time spans) unless more accurate ob-
servations of the universe are found. 

7.4.1 Point-Mass Interactions 

The n-body equations were derived by JPL’s Frank Estabrook in 1971, with vari-
ous refinements within the astronomical community continuing since.  Details of 
the original derivation appear in [Moyer1971], Appendix C.   

Numerical integration of the equations of motion is the only known method ca-
pable of computing fundamental ephemerides to accuracy comparable  to that of 
the available observations.  Analytical theories have so far not been able to attain 
accuracy this high. The numerical integration method used in generating the fun-
damental ephemerides was a variable step size, variable order Adams method 
developed by JPL’s Fred Krogh [Krogh1972], called DIVA. 
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The equations of motion and the methods used to integrate them are considered 
to be so precise that the accuracies of the initial conditions and assumed dynami-
cal constants are now the dominant factors that determine ephemeris accuracy. 

The equations governing object positions and accelerations include the n-body 
general relativistic (GR) metric tensor values defined in the earlier Spacetime 
chapter.  The short form of the that solution is   

 3 2 2

( ) 1 1
1j j i
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j i ij
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r c c

µ
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−     = + +        
∑

r r
r&&  (7-85) 

There is one such equation for each of body i  of the solar system6 considered to 
have a significant enough effect on the trajectories of the bodies included.  The 
first term of this relationship may be recognized as the Newtonian acceleration of 
body i .  The terms involving 2(1/ )O c  are GR perturbations deriving from ele-
ments of the metric tensor g  discussed in the Spacetime chapter.  They are siz-
able in number, and are suppressed here for brevity.   

The number of significant terms retained in the summand above will depend on 
the position of the object i  relative to the other perturbing influences.  When the 
object is a spacecraft in orbit about a planet, then that planet becomes the primary 
gravitational influence.  More terms may be added in, depending on the degree of 
influence, such as the moons of the planet in the spacecraft case. 

The system of equations solved in generating fully accurate ephemerides for a 
given set of objects in the solar system thus require judicious adaptation to those 
objects.  The long-form system of equations for point mass interactions appears 
below [Standish2007]. 

                                                 
6 The masses of spacecraft or other objects of low mass are not included when generating funda-
mental ephemerides of the planets, moons, and asteroids.  Ephemerides for low-mass objects are 
treated separately, after the fundamental ephemerides have been generated, using the positions of 
bodies in the fundamental ephemerides. 
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This is almost the same as Eq.(5.211-1) appearing in the Explanatory Supplement 
to the Astronomical Almanac, except for the last term above, which does not ap-
pear, and the next-to-last, which sums over five asteroids. 

In the above equation, the principal gravitational forces on the nine planets, Sun, 
and Moon are modeled as point masses in an isotropic, parameterized post-
Newtonian (PPN) n-body metric, such as that discussed in the Spacetime chapter.  
Also included are Newtonian gravitational perturbations from 300 asteroids, cho-
sen because they have the most pronounced effect on the Earth–Mars distance 
over the time span for which accurate spacecraft ranging observations exist.  

In this equation, ir , ir& and ir&&  represent the solar system barycentric position, ve-
locity, and acceleration, respectively of the body indexed by i ; i iG mm =  is its 
gravitational constant; and | |i iv = r&  is its velocity.  The coefficients b  and g  
are post-Newtonian parameters, respectively measuring nonlinearity in superpo-
sition of gravity and curvature of space produced by unit rest mass.  The JPL 
ephemerides set these values to their GR-theoretic values of unity. 

The astute reader will note the appearance of two terms on the right-hand side of  
the equation containing second derivatives, which denote barycentric accelera-
tions of each body due to effects of the remaining bodies and the asteroids.  
Strictly speaking, the right-hand side of the equation is dependent upon the left-
hand side, and so, to be rigorous, the computation should be iterated at each step.  
However, use of Newtonian accelerations for these terms is deemed sufficiently 
accurate, and highly efficient.  These terms therefore are replaced by the corre-
sponding results of Eq.(7-86) with all relativistic terms (those involving c ) omit-
ted. 
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The next-to-last term of the equation reflects the effects of asteroids, and, in this 
version, is limited to Ceres, Pallas, and Vesta. The ESAA [Seidelman1992] ver-
sion of this formula, however, included 5 asteroids.  The last term represents 
forces upon the Earth, Moon, and Mars, only, from 297 other asteroids, grouped 
according to three taxonomic classes (C, S, M).  

7.4.2 Solar System Barycenter 

The solar system barycenter definition is modified from the usual Newtonian 
formulation, which, according to the ESAA [Seidelman1992], is 

 * 0i i
i

m= =∑c r  (7-87) 

where summation extends to all bodies of sufficient import, with the modi-
fied gravitational constants 
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It is noted that the barycentric position depends on the set of positions of all ob-
jects in the summation, which, in turn, depend on the position of the barycenter.  
Iteration is thus required in order to assure that the barycenter satisfies Eq.(7-87). 

7.4.3 Lunar Ephemerides 

In addition to the point-mass interactions outlined above, the integrated lunar 
ephemerides require the inclusion of the figures of the Earth, Moon, and Sun in 
the mathematical model.  The figure of a body is a characterization of its shape, 
in this case, relative to a spheroid.  The figure of importance in this case is the 
representation of non-spherical gravitational potentials, such as the near-fields of 
the Earth, Moon, Venus, and Sun, since this potential is proportional to the force 
of attraction of a point mass at a given location. 

A short introduction into these effects is given below. 

7.4.3.1 Figure Effects 
The common representation of the gravitational potential at a point expressed in 
spherical coordinates ( , , )r f l , where r  is distance from the body barycenter, f is 
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colatitude from the polar axis, and l  is longitude, of a body having semimajor 
axis a  and gravitational constant m  is in the form of a spherical harmonics ex-
pansion, 

 ( ) , , ,
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n m n m n m
n m
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In this representation, ,n mC and ,n mS  are the spherical harmonic coefficients of 
degree n and order m  and ,n mP  is the so-called Associated Legendre Function of 
degree n and order m .  A gravitational model of the body consists of a set of 
constants that specify the semimajor axis, gravitational constant, and spherical 
harmonic coefficients. 

Such models are usually div ided into three sets of terms, here denoted 0U , 1U , 
and 2U , in which the cases for 0n = and 0m = are separated, as 

 ( )
( )

0

1 ,0
1

2 , , ,
1 1

(sin )

(sin ) cos sin

n
n n

n
n n

n m n m n m
n m

U r
aU J Pr r

aU P C m S mr r

m

m f

m f l l

∞

=
∞

= =

=

= −

 = +  

∑
∑ ∑

 (7-90) 

The first of these is recognized as the point-mass potential, and its effects are al-
ready included in Eq.(7-86).  No further consideration of it is warranted here. 

The second, whose coefficients have been redefined for historical purposes, is 
independent of longitude; its constituents are referred to as zonal harmonics; 
these terms quantify how much the body is “out-of-round” about the equator.  
The even-degree zonal harmonics are symmetric , and the odd-degree ones are 
asymmetric about the equator.  The degree-2 zonal harmonic models the oblate-
ness of the body.  The zonal harmonic of degree n  has this many zeros from pole 
to pole; thus, the set of zonal harmonics map out the latitudinal fine structure that 
is independent of longitude. 

The harmonic coefficients in the third potential term characterize variations in 
potential that depend on longitude.  Those terms with n m= are called sectori-
als, and the others are called tesserals. 

So, having gravitational models of the bodies of interest, it remains to compute 
the accelerations due to their 1U and 1U  terms.  Since the force field at the given 
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point is the negative of the gradient of the potential function, the acceleration due 
to the two terms is 

 1 2( )fig U U= − ∇ +r G&&  (7-91) 

The matrix G  is necessary to transform the reference frame from body-centric to 
solar system barycentric.  Evaluation of Eq.(7-91) is reasonably straightforward, 
but tedious and relatively uninformative.  Details may be found in [Moyer1971]. 

The JPL ephemerides include the force of attraction between the known zonal 
harmonics (through fourth degree) of the Earth and the point-mass Moon, Sun, 
Venus, and Jupiter, together with the force of attraction between the zonal har-
monics (through fourth degree) and the second- through fourth-degree tesseral 
harmonics of the Moon and the point-mass Earth, Sun, Venus, and Jupiter, plus 
the 2J dynamical form-factor of the Sun. 

7.4.3.2 Earth Tides 
The tides on Earth raised by the Moon and Sun appear as a bulge on the Earth 
that, in turn, affects the lunar orbit.  The model for the differential acceleration of 
the Moon due to these tides used in generating the JPL lunar ephemerides is 
found in [Standish2007]. 

7.4.3.3 Lunar Librations  
In order to express coordinates in a Moon-centered frame, it is necessary to trans-
late the reference frame of the ephemerides (i.e., the ICRF) into the Moon-
centered system, called the selenographic frame.  The Moon rotates relative to 
the inertial frame and its surface is distorted by Earth-induced and figure-induced 
torques; nevertheless, its mean principal axes are well defined.  The transforma-
tion is characterized by a set of Euler angles ( , , )f q y , in which f is the angle 
from the x-axis of the ephemeris frame along the xy-plane to the intersection of 
the lunar equator, q is the inclination of the lunar equator upon the xy-plane, and 
y is the longitude from that intersection along the lunar equator to the prime me-
ridian.  Derivation of the Euler angles and related computations are found in 
[Standish2007]. 
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7.5 Types of Orbits 

Trajectories of space objects are not only classified with regard to the theory by 
which their ephemerides are generated—Keplerian, perturbed Keplerian, or inte-
grated equations of motion—but also by the usages intended for the objects in 
these trajectories and by salient characteristics of their paths relative to given ref-
erence frames.  This section discusses some of these usages and characteristics. 

7.5.1 Orbital Transfer 

An object at rest on a planet or moon requires a rocket-powered launch to put it 
into orbit about that planet.  An object in orbit about a planet or moon requires a 
rocket-powered deceleration to land on the intended surface.  An object in orbit 
about one body may be sent toward another body, where it may fly by, orbit, or 
land on that body.  All of these trajectories may be viewed as changes from one 
set of orbital elements to another.  The process of changing from one set of or-
bital parameters to another is called orbital transfer. 

Since orbital transfers require energy, a commodity always at a premium in space 
flight, all means for carrying out low energy transfers are rigorously sought by 
mission designers.  On the other hand, the time to reach an intended mission 
state, such as a planetary encounter or injection into orbit, usually requires the 
expenditure of fiscal resources during the flight, which is also a concern.  So mis-
sion expense and rocket fuel are correlated, sometimes competing mission design 
factors. 

Insofar as the MPG is concerned, the final, post-design-phase spacecraft trajecto-
ries are supplied in the form of precision ephemerides.  It is not concerned with 
orbital transfer, per se.   However, ephemerides incorporating orbital changes 
have, in the past, caused MPG problems to arise, usually during the intervals sur-
rounding the transfer.  Aside from orbital changes due to solar pressure or ion 
engines, transfers are usually relatively short term7 phenomena, as compared to 
the overall orbital duration.   

                                                 
7 The orbit transfers here are considered instantaneous ones.  In practice, they may be extended 
over a few seconds (as in motor thrusts) to a few minutes (planetary landings), to hours (aero brak-
ing).  Typical spacecraft ephemerides during such periods are characterized by short, perhaps dis-
continuous records that create challenges to MPG generation of polynomial profiles of data types 
during these extents. 
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In order to conform to these short-term orbital adjustments, the MPG design was 
able to incorporate methods to detect and adjust its operation, without operator 
intervention.  An understanding of the character of orbital transfer often proved 
useful in such cases to adapt MPG performance to the ephemeris phenomena.   

Further, by simulating certain orbital characteristics in a Mathematica environ-
ment that gave rise to problems, MPG development was able to delve into the 
mathematical reasons for the problems causes and to devise correct responses to 
the errant behavior. 

This section discusses some of the techniques used to achieve orbital transfers 
and their associated energy costs.  Keplerian orbital descriptions will suffice to 
illustrate the principles involved. 

Energy costs are typically cited in terms of the change in velocity required, at a 
given point in a trajectory, to effect the needed change.  Termed delta-v, or ∆v , 
the change is comprised of in-plane and out-of-plane components.  Coplanar 
changes can affect all elements except inclination, which is only affected by out-
of-plane delta-v , 

If, at a given state 0 0( , )r v  of a Keplerian orbit, a given ∆v  is instantly applied, 
then the orbital angular momentum changes to 

 0 0 0
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 (7-92) 

The remainder of the object’s trajectory (until a new orbital adjustment) is then 
determined by the new state, 
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The SPICE utility OSCELT can be used, given this state vector, to determine the 
new orbital parameters.  However, while designing the orbital transfer, the re-
verse process may be required: given goals for the altered orbit , determine the 
needed delta-v to achieve them.  In this case, one works from the given informa-
tion to find the orbital elements required, using the element equations given in an 
earlier section, and then solves for the needed delta-v.  However, the nonlinearity 
of the problem generally bodes against this procedure, except in idealized situa-
tions, so some iteration is usually required. 
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The delta-v required to change the semimajor axis, however, may be readily 
found by differencing the squared velocities just before and just after the transfer 
(where the position vector is yet unchanged), using the vis-viva equation that ap-
plies to each case, and solving for a .  The result is that 
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a v v a
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m= − +  (7-94) 

Notice that the magnitude of the transfer velocity determines the semimajor axis, 
independently of the direction of velocity change. 

By applying (7-39), the change in eccentricity is found to follow the relationship 
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Like semimajor axis, changes in eccentricity are determined by overall magni-
tudes of change in velocity and angular momentum, not by their directions. 

7.5.1.1 In-Plane Orbital Adjustments 
Applying an instantaneous coplanar delta-v at a given point in an orbit changes 
only the magnitude of the angular momentum, and thus affects potentially all of 
the orbital parameters except inclination and longitude of the ascending node, 
which are functions of the orientation of the angular momentum, and not its 
magnitude. 

In particular, the application of a coplanar ∆v  produces an angular momentum 
h  of the subsequent trajectory that is in the direction of the initial angular mo-
mentum, with magnitude 
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where j  is the flight angle (angle between ∆v and tangent to r ).  The subse-
quent apsis distances and velocities are related via  

 0, 0,p p a a p pr v r v r v h= = + ∆  (7-97) 

The eccentricity, for example, changes by an amount 
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 0 ,0 0[( ) cos ]/p p pe e v v h v r v j m− = − + ∆  (7-98) 

7.5.1.2 Inclination Changes 
Consider the instantaneous delta-v required to change only the inclination of the 
orbital plane by an amount i∆ .  In this case, the magnitudes of the initial and 
final velocity vectors are equal, but differ in direction.  The difference vector 

i∆v  is the base of an isosceles triangle, whose magnitude vi∆  is, from elemen-
tary geometry, 

 2 sin 2v vi
i∆ ∆ =     (7-99) 

As may be seen, inclination changes may require significant energy to complete.  
Such transfers in a mission are therefore made only when necessary and at points 
in the orbit where it is most economical to do so.  Additional discussion of this 
topic appears in the next section.  

7.5.2 Hohmann Transfer Orbits 

The Hohmann transfer orbit is one half of an elliptic orbit that touches both the 
circular orbit that one wishes to leave and the circular orbit that one wishes to 
reach. The transfer is initiated by firing the spacecraft's engine in order to give it 
the required delta-v that will cause it to follow the elliptical orbit.  When the 
spacecraft reaches its destination orbit, a new orbital transfer is initiated to enter 
the final circular orbit.  Orbital transfers of this sort are almost always the most 
energy-efficient way to get from one circular orbit to another. 

This maneuver is named after the German scientist Walter Hohmann, who 
published it in 1925, although the Russian mathematician Vladimir Vetchinkin is 
also known to have presented public lectures on this subject in 1921-1925.   The 
technique, so important to modern space travel, was thus invented long before the 
space age. 

 These transfer orbits work to bring a spacecraft from a higher orbit into a lower 
one, as well as from a lower orbit into a higher one.  In the former case, the 
spacecraft's engine is fired in the opposite direction to its current path, 
decelerating the spacecraft and causing it to drop into the lower-energy elliptical 
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transfer orbit. The engine is then fired again in the lower orbit to decelerate the 
spacecraft into its final orbit. 

The technique can be generalized somewhat, to relax the condition, that the 
spacecraft at the initiation of transfer, and the target at the completion of the 
transfer, be circular orbits.  The orbit between, however, is required to be an 
elliptical path from the initial state to the final position.  However, the treatment 
here will stick to the classic formulation, and, in particular, the elliptic trajectory 
between a point on an inner orbit to a point on an outer orbit such that the line 
connecting the two passes through the center of mass of the primary. 

7.5.2.1 Coplanar Hohmann Trajectory 
One of the assumptions of the Hohmann theory is that the transfer orbit between 
the two circular orbits actually touches each orbit; that is, that the point of 
encounter actually lies in the transfer orbit plane.  This case will be first.  The 
case in which this is not true is considered in the next subsection. 

The point on the inner orbit will be the periapsis pr  of the orbit and that on the 
outer will be the apoapsis ar .  The ratio of the magnitudes of these two vectors 
determines the orbital eccentricity, via Eq.(7-13), 
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The semimajor axis is the average 

 2
p ar ra +=  (7-101) 

The time required to traverse the Hohmann orbital segment is one-half the period 
of the ellipse given by Eq.(7-46), or 

 
3

,p a
aT p m=  (7-102) 

The velocity required at the starting point and that achieved at the ending point, 
i.e., at the two ends of the orbit, are given by Eq.(7-38).  If, as the Hohmann the-
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ory assumes, the pre- and post-transfer orbits are circular, then the velocities be-
fore and after the maneuver are 
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A subscript 0 is used on both, to designate that the theory applies to circular or-
bits.  Therefore, the delta-v components required for orbital transfer from circu-
lar, to elliptic, and then back to circular at each end are 
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Both of these are expressed as positive values, as the energy required to effect 
each is positive.  The direction, however, must be chosen to boost or retard at one 
end and to do the same at the other.  When transferring form an inner trajectory 
to an outer one, additional velocity is required to inject the spacecraft into the 
transfer orbit, and when it arrives, it still does not have the required orbital veloc-
ity, so an additional boost will be required.  The opposite is true of an inward 
bound transfer.  The spacecraft must be retarded in order for it to fall inward 
along the transfer orbit, and, when it reaches the inner circle, it must be slowed 
further to transfer into that circular orbit. 

As an example, the Hohmann trajectory between Earth and Mars requires a 
launch delta-v of about 2945 m/s, and an encounter delta-v of about 2649 m/s.  

7.5.2.2 Orbit Inclination Adjustment 
While most of the planets lie near the ecliptic, their orbital planes all differ.  In 
such cases, a Hohmann orbit chosen, for example, to leave Earth toward Mars 
would reach its destination only to find Mars perhaps too many kilometers distant 
for an economical delta-v to conform the two orbits.  In general, when the target 
body at the terminus of the Hohmann orbit does not lie in the orbital plane, then a 
mid-course maneuver somewhere along the route is necessary. 
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The position of the midcourse correction can be chosen to be any point along the 
trajectory between injection and encounter; however, tremendous expense is in-
curred if made very near either of the endpoints, for the required inclination 
change in these cases is about 90º.  The delta-v required at the end of an outward-
bound Hohmann trajectory would be 
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If the correction is made at the semi-latus rectum point ( / 2q p= ), the velocity 
given by Eq.(7-22)) put into the formula of Eq.(7-99) sets the required delta-v at 
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where d  is the inclination of the target orbit relative to the Hohmann orbit.  The 
ratio of the two delta-v requirements is 
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As an example, the Mars orbit is tilted relative to the Earth orbit by about 
0.03d =  radians, so a Mars-bound trajectory requires a maximum v∆  at the 

semi-latus rectum of about 850 m/s.  Since velocity is decreasing in the outward 
journey, the optimal burn, at a true anomaly of 0.57 p , reduces the requirement 
somewhat, to 832 m/s.  The ratio in Eq.(7-107) is 0.02, a factor of about 50! 

7.5.3 Launch Trajectories 

In order for an object at rest on the surface a body to enter into a orbit about the 
body, it must be launched to an elevation above the body’s atmosphere (if there 
is one), accelerated to a sufficient velocity, and given a direction such that it does 
not (soon) reenter the atmosphere or impact upon its surface. 

If energy efficiency is an issue, as it usually is, the path requiring the least pro-
pellant will make use of the body’s rotation velocity by launching in the direction 
of the body rotation from a location as near the equator as feasible.  The launch 
phase typically ends when the payload reaches a design state ( , )r v , whose orbital 
elements may be found using OSCELT, or the formulas it embodies.  If the orbit 
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achieved at this point is not the intended final one, then subsequent orbital ma-
neuvers are applied to attain the mission goals. 

Trajectories and energy requirements of vehicles in powered flight are not de-
scribed by Keplerian elements, except on an instantaneous basis, and are beyond 
the scope of discussion here.  

Launch phase ephemerides are susceptible  to the segmentation and dynamic be-
havior imposed by the assumed force and mass models of the launch process.  
The MPG is required to adapt to such ephemerides, however, without any exter-
nal information about the mission itself or its dynamics. 

7.5.4 Reentry and Landing Trajectories 

Trajectories of vehicles in atmospheric reentry and landing on a planetary or 
moon surface are subject to counter thrusts required to initiate and control reen-
try, atmospheric drag (if there is an atmosphere present), and landing dynamics 
(such as bouncing off the surface, if aboard a balloon).  Reentry does not follow 
Keplerian theory, but generally requires more sophisticated propagation methods, 
such as integration of the equations of motion. 

Reentry phase ephemerides, like launch ephemerides, are susceptible to segmen-
tation and dynamic behavior imposed by the assumed force and mass models of 
the reentry process.  The MPG is again required to adapt to such ephemerides 
without any external information about the mission itself or its dynamics. 

7.5.5 Synchronous Orbits 

The MPG does not generally deal with spacecraft in geosynchronous orbit, but 
some characteristics of the orbit may be of relevance, as a topic of general inter-
est.  The geosynchronous orbit is ideally circular, at zero inclination, with period 
exactly one sidereal day.  The satellite distance from the geocenter follows from 
Eq.(7-46), 
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or 35,786 km above the Earth surface.  This orbit is attained in two stages:  first, 
a Hohmann orbit places the satellite into an orbit with the apogee above, and 
then, an adjustment is made to circularize the orbit by the appropriate thrust at 
apogee (sometimes humorously referred to as a kick in the apogee).  If the orig i-
nal apogee cannot be located in the equatorial plane, a third maneuver may be 
necessary to zero the inclination. 

7.5.6 Polar Orbits 

Orbits whose inclinations are (nearly) 90º are useful for mapping and surveil-
lance operations, because, as the body rotates, the entire surface area comes into 
view. 

7.5.7 Walking Orbits 

A walking orbit, also known as a precessing orbit, is one in which the orbital 
plane moves slowly with respect to inertial space.   The rate of precession can be 
intentionally controlled by choosing the orbital parameters to take advantage of 
some or all of the gravitational influences that cause orbital precession.  Such 
factors include the non-spherical distribution of mass of the primary body, as 
well as the gravitational attractions of other bodies, such as the Sun or nearby 
moons. 

Orbital precession is due to the secular motion of the orbital plane, and, when 
oblateness of the primary is its chief causal agent, its rate is given by Eq.(7-79),  
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For a given primary equatorial radius R  and 2J  factor, orbital parameters may be 
chosen to provide the precession desired. 

7.5.8 Sun Synchronous Orbits 

Sun synchronous orbits are walking orbits whose orbital plane precesses at the 
same rate as the primary’s solar orbit.  Such orbits are useful for satellites that 
may require a constant angle of illumination from the Sun.  Orbital adjustments 
may be occasionally warranted in order to maintain the correct orientation. 
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7.5.9 Molniya Orbits 

The Molniya (Russian for “lightening”) orbit is a highly eccentric Earth orbit 
(HEO) of period of about 12 hours, whose orbital parameters have been chosen 
to provide long periods of operation over the northern hemisphere and to set the 
rate of change in perigee to zero.  As indicated in Eq.(7-79), this requirement will 
be fulfilled if the inclination is chosen to satisfy 

 24 5sin 0i− =  (7-110) 

The inclination in this case is 63.4º or 116.6º. 

The eccentric anomaly of the orbit at the semi-latus rectum point ( /2)q p= ± is, 
by Eq.(7-49), equal to 1cosE e−= , so the mean anomaly at this point is 
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The time from perigee may thus be calculated.  The total time from one semi-
latus rectum point to the next, passing through apogee, is then found to be 
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The semimajor axis that gives a half-sidereal-day orbit is 26,658kma = , and the 
eccentricity that keeps the trajectory in the northern hemisphere for 11/12 (i.e., 
11 hours) of this time will be 0.724e = .  The perigee and apogee are 
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Actual Soviet Molniya orbits averaged 1507 39,305× km, which correspond to 
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7.5.10 Gravity Assisted Orbits 

A gravity assisted orbital maneuver is an example of the so-called restricted 
three-body problem, in which one body of insignificant mass is influenced two 
others having more significant masses.  The two larger-mass bodies, say the Sun 
and Jupiter, orbit their barycenter, while the other, say a spacecraft, takes an orbit 
influenced by the other two.  By directing the smaller mass toward a close en-
counter with the secondary mass body, a net change in orbital energy can be at-
tained, sending the spacecraft toward an intended target. 

Much work has been done over the years toward solving this problem without 
resorting to numerical methods, but all rigorous attempts so far have failed.  The 
method was considered in modern space navigation by the Russian Academy of 
Sciences in 1959.  Michael Mintovitch, however, who came to JPL in 1961, is 
credited with being the first person to thoroughly explore the concept of gravity 
assist transfers between multiple bodies in any order.  

The technique was first used in the Pioneer 10 mission, in which the spacecraft 
was boosted beyond the Sun’s escape velocity by a flyby of Jupiter in 1973.  In 
1974, Mariner 10 fly by of Venus in 1974 produced a transfer orbit toward Mer-
cury.  Since then, it has been regularly applied to many other missions.  The 
method is discussed below. 

While the precise path of the spacecraft during the time it is within the transition 
region between the two gravitational influences requires solution by rigorous 
means, the gravitational assist mechanism itself may be explained in rather sim-
pler terms.  If the spacecraft state 0 0( , )r v  at entry into the planet’s sphere of in-
fluence and the planet’s state ( , )p pr v  at this time are given, then the exit state 

1 1( , )r v  can be estimated as follows: 

Since the spacecraft is presumed to be in the planet’s sphere of influence, the 
flight in the planetocentric reference frame may be approximated by a conic tra-
jectory, and, in this case, a hyperbolic orbit.  The planetocentric frame is parallel 
to the inertial frame, but is centered at the planet, rather than the SSB.  The state 
of the spacecraft in this frame at entry will be 

 0, 0, 0 0( , ) ( , ) ( , )p p p p= −r v r v r v  (7-115) 

This state determines the path’s set of orbital elements in the planetocentric 
frame.  These parameters may then be used to propagate the conic state to a point 
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1, 1,( , )p pr v  having the equal true anomaly , but beyond periapsis.  This is the point 
at which the spacecraft is exiting the planet’s sphere of influence, and is such that 
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In planetocentric terms, then, the maneuver has changed the spacecraft velocity 
in orientation, but not in magnitude.  The velocity turning angle for the hyper-
bolic orbit is 1( 2cos (1/ ))ep −− . 

The exit state in inertial space is then 

 1 1 1, 1,( , ) ( , ) ( 2 , )p p p p pt= + + ∆r v r v r v v  (7-117) 

where t∆  is the time to periapsis found from the osculating element set.  The 
velocity of the planet is presumed to be relatively constant over the spacecraft 
flyby period and equal to pv . 

The delta-v incurred in this maneuver can now be estimated to be 
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The spacecraft kinetic energy has changed by the factor 
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This phenomenon presents a seeming paradox.  Physics teaches that the total en-
ergy, potential plus kinetic, of a test particle is constant as it moves through the 
gravitational field of a far more massive body.  Its speed increases as it nears the 
other body and the direction of its velocity vector changes as it passes the body.  
As it recedes from the encounter, its speed decreases again.  The total energy in 
this situation (the two body problem) is constant.   

However, as seen from the above analysis, there is a net change in kinetic energy 
over a relatively short period during which the potential energy relative to a third, 
even more massive body, stays relatively constant.   As the spacecraft recedes 
from the planet, its momentum has been changed by an amount m∆ = ∆p v and 
the planet’s momentum is then pM − ∆v p .  Here m  represents the mass of the 
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spacecraft, and M , that of the planet.  The planet’s velocity immediately after 
encounter thus becomes /p M− ∆v p , so the change in its kinetic energy is 
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The planet therefore loses a slight amount of energy that is proportional to the 
spacecraft mass, its change in velocity, the planet’s speed, and the cosine of the 
flight angle.  This loss is the energy gained by the spacecraft. 

7.6 NAIF Ephemeris Types 

Ephemerides that are accessed by the MPG are not all of the same format, al-
though the information retrieved from them using the SPICE toolkit makes them 
appear to be.  Although the differences between accessed ephemeris data is hid-
den from the MPG as a user, a knowledge of the different data types has been  
found useful when developing or debugging a particular application.  For this 
reason, and to display the range of forms of representation, the various SPICE 
ephemeris types are enumerated and briefly discussed below.  The interested 
reader may consult the SPICE required reading file SPK.REQ for further details. 

The SPICE file types are labeled numerically, currently 1 to 18, and are mainly 
differentiated in the way data are represented rather than by the method by which 
data were generated. 

The trajectories of objects found in Spacecraft and Planetary Kernel (SPK) files 
are represented in pieces called segments. A segment represents some arc of the 
full trajectory of a specified object. Each segment contains information that 
specifies the geometric state of an identified target object relative to an identified 
center of motion in a designated reference frame over some particular interval of 
time.   Either body may be a spacecraft, a planet or planet barycenter, a satellite, 
a comet, an asteroid, a tracking station, a roving vehicle, or an arbitrary point for 
which an ephemeris has been calculated.  From the point of view of the SPK sys-
tem, segments are the atomic portions of a trajectory. 

The epochs corresponding to the states are barycentric dynamical times (TDB), 
expressed as seconds past J2000. 
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SPK files are binary files. The data in each segment are stored as an array of 
double precision numbers. The format of these binary files is based upon a more 
abstract file architecture called Double precision Array File, or DAF.  However, 
being binary, they must be produced or translated using SPICE utilities into 
forms suitable for each particular MPG host in use. 

Each segment contains a summary descriptor, which contains the initial and final 
epochs of the interval; the NAIFIDs of the target, center, and reference frame;  
the ephemeris type number; and locators for beginning and end of the segment. 

The SPICE toolkit has a number of utilities that are used to access ephemeris 
states.  Perhaps those that are most used in the MPG are SPKEZ and SPKEZR, 
which return states of any target object possessing a NAIFID as observed by any 
other NAIFID at a given ephemeris time for a specified aberration type, provided 
the needed underlying ephemerides have been supplied.  The former utility re-
quires the NAIFID in numeric form, while the latter also accommodates text 
name equivalents of the NAIFID numbers. 

7.6.1 Modified Difference Arrays 

Type 1 ephemerides are created by the JPL Orbit Determination Program8 
(ODP), and used primarily for integrated spacecraft ephemerides.  The file re-
cords in this representation are polynomial profiles of position and velocity in a 
form referred to as “modified difference arrays,” or MDAs.  These are a revised 
form of Newton's divided-difference coefficients, as presented in an earlier 
chapter.  Unfortunately, the method of interpolation is largely undocumented, 
and a mystery to those who ported the pre-existing code into the SPICE library. 

MDA files were the principle form of ephemerides used by the MPG 
predecessor, the Network Support Subsystem Metric Prediction application.  
They are often referred to as “P-files” or “PV-files” or “NIO files.”  The SPICE 
versions of these ephemerides organizes the polynomial records into SPICE’s 
standard file format, and little else. 

                                                 
8 Often referred to at JPL as the DPODP, or double precision ODP, to differentiate it from an ear-
lier incarnation.  As used here, the term applies to a system of programs, including PV, REGRES, 
and DPTRAJ. 
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Unfortunately, the method of interpolation is undocumented, and a mystery to 
those who ported the pre-existing code into the SPICE library.  For this reason, 
only the ODP is capable of generating output that can be made into Type 1 files. 

Ephemerides of spacecraft during launch and reentry or landing phases are typi-
cally composed of a series of records in which the ODP has modeled force ef-
fects and mass changes, such as are due to motor thrusts, solar wind, aerody-
namic braking, fuel depletion, and rocket staging.  The integrator in the ODP ap-
pears to restart at each time boundary where thrust or mass models abruptly 
change.  The ephemeris records in these regions typically appear to become very 
short, growing longer as the model becomes better established. 

The NAIF utility SPKBRK locates the boundaries of ephemeris records at which 
possible discontinuities appear, so that the MPG curve fitting object may also 
observe these boundaries. 

7.6.2 Chebyshev Polynomials, Position Only 

Type 2 SPICE files contain sets of coefficients of Chebyshev polynomials for the 
position of a body as a function of time.  The coefficients for each position 
polynomial are presumed to apply to the same time span.  All polynomials in 
Type 2 ephemerides have the same degree. 

These files typically describe the paths of planet barycenters and satellites whose 
ephemerides are integrated.  Since only the position of the body is modeled by 
the polynomial profile, the body’s velocity is found by differentiating the 
position polynomial. 

The method for evaluation follows that given in the chapter on Interpolation. 

7.6.3 Chebyshev Polynomials, Position and Velocity 

Type 3 SPICE files contain sets of coefficients of Chebyshev polynomials for 
both position and velocity of a body as a function of time.  This data type is 
typically used for satellites for which the ephemeris is computed from analytical 
theories. 

The structure of these files is much like that of Type 2 files, except for the added 
velocity coefficients.  As in Type 2 files, the coefficients for each position and 
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velocity polynomial are presumed to apply to the same time span.  All 
polynomials in Type 3 ephemerides have the same degree. 

The method for evaluation follows that given in the chapter on Interpolation. 

7.6.4 Reserved for future use 

There are, as of this writing, no Type 4 SPICE files.  The type was reserved for 
future implementation of  a style referred to as “TRW elements for TDRSS and 
Space Telescope,” which is not further described. 

7.6.5 Discrete States 

Type 5 SPICE files contain sets of discrete states of the body over a specified 
period of time.  The representation of the body state at any other time is found 
using weighted two-body propagation.  Files of this type typically are used for 
comets and asteroids, whose ephemerides are integrated from some given initial 
state or osculating elements. 

The evaluation method calculates the state of a body at a given time that lies 
between the instants of  two recorded states by propagating the initial and final 
states to the given time using two-body theory, and then taking a weighted 
average of the two results.  The weighing function is nonlinear, giving a 
proportionately higher preference to the nearest recorded state’s estimate and an 
equal weighting in the middle of the interval. 

7.6.6 Reserved 

The Type 6 SPICE file format is reserved, intended for future implementation of 
an analytic model for the orbits of Phobos and Deimos. 

7.6.7 Reserved 

The Type 7 SPICE file format is reserved, intended for future implementation of 
precessing classical elements such as used by the Space Telescope Science 
Institute. 
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7.6.8 Equally Spaced Discrete States 

Type 8 SPICE files contain sets of state vectors at equally spaced times over a 
specified interval.  The geometric state at any given time within the overall 
interval is evaluated using Lagrange interpolation of the component samples.  
Each segment in the file contains the degree of the polynomial to be used in 
performing the interpolation.  SPICE makes special use of the equal spacing of 
samples to improve run-time speed and efficiency over Type 9 files. 

7.6.9 Unequally Spaced Discrete States 

Type 9 SPICE files contain sets of state vectors at sample times that may be 
irregularly spaced over the specified coverage interval.  The geometric state at 
any given time within the overall interval is evaluated using Lagrange 
interpolation of the component samples in the vicinity of the given time.  Each 
segment in the file contains the degree of the polynomial to be used in 
performing the interpolation.  Because of the possible non-uniformity in spacing 
of sample states, interpolation suffers somewhat in run-time speed and efficiency 
as compared to Type 8 files. 

7.6.10 Space Command Two-Line Elements 

The SPICE data Type 10 uses SPICE generic segments to store a collection of 
packets each of which models the trajectory of some Earth satellite using the 
Space Command Two-Line Element (TLEs) format, formerly known as the 
North American Air Defense (NORAD) SGP4/SDP4 model.   

Algorithms for TLE propagation are described in the Spacetrack 3 Report (see 
[Hoots & Roehrich 1980]).  However, that implementation contained several 
programming errors, which are reported as being corrected in the SPICE toolkit. 

The TLE format contains 14 numeric values on the first line and 10 on the sec-
ond.  Together, these identify and classify the satellite and its launch, ephemeris 
type and number, the epoch of the elements, the orbital elements themselves, de-
rivatives of some orbital elements, and a ballistic  drag coefficient that represents 
the susceptibility of the object to orbital decay.  The six orbital elements provided 
are inclination, ascending node, eccentricity, argument of perigee, mean anomaly 
at epoch, and mean motion.  The ephemeris designation indicates the complexity 
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of the model and whether the body is considered a near-Earth or deep-space tra-
jectory. 

The SPICE Type 10 record format additionally contains the gravitational con-
stants that apply to the orbit, such as GM , 2J , 3J , etc., the planet’s equatorial 
radius and atmospheric model heights. 

The most important point to be noted about the TLE format is that the parameters 
it contains are so-called “mean” values obtained by removing periodic variations 
in a particular way peculiar to the ephemeris model. In order to obtain good pre-
dictions, these periodic variations must be reconstructed by that model which 
reinserts these components in exactly the same way they were removed by 
NORAD.  Using the given parameters in a different model will result in degraded 
predictions, even though that model may be based on a higher accuracy theory. 

7.6.11 Reserved 

The intended use of the SPICE Type 11 format is unspecified. 

7.6.12 Hermite Interpolation, Uniform Spacing 

The twelfth SPICE data type represents a continuous ephemeris by a discrete set 
of states and a sliding window Hermite interpolation method.  The epochs, or 
time tags, that are associated with the states are evenly spaced by a positive con-
stant STEP such that each time tag differs from its predecessor by STEP seconds.  

For any requested epoch, the corresponding state is found by interpolating a set 
of consecutive states, or window, centered as closely as possible about the re-
quested epoch. Interpolated position values are obtained for each coordinate by 
fitting a Hermite polynomial to the window's set of position and velocity values 
for that coordinate.  The velocity that is returned is obtained by differentiating the 
position polynomials.  

 The SPICE system also represents ephemerides using unequally spaced discrete 
states and Hermite interpolation in the SPICE Type 13 format. Ephemerides of 
Type 13 sacrifice some run-time speed and economy of storage in order to 
achieve greater flexibility. 
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Each segment also has a polynomial degree associated with it.  This is the degree 
of the interpolating polynomials to be used in evaluating states based on the data 
in the segment. The identical degree is used for interpolation of each state com-
ponent. 

The interpolation method uses Newton’s divided difference formula, as inter-
preted for function and derivative samples, as described in the Interpolation chap-
ter of this work.  The interested reader may consult the SPICE HRMESP (Hermite 
Interpolation, Equally Spaced samples) function commentary for specifics. 

7.6.13 Hermite Interpolation, Nonuniform Spacing 

The thirteenth SPICE ephemeris type, as was also the Type 12 format, a 
representation of a continuous trajectory using a discreet set of states and a 
sliding window Hermite interpolation method.  However, in this case, the time 
tags associated with the set of states are not necessarily evenly spaced.  The rest 
of the functionality is the same as given for Type 12 files, however. 

The interpolation method in this case also uses Newton’s divided difference for-
mula, as interpreted for function and derivative samples, as described in the In-
terpolation chapter of this work.  The interested reader may consult the SPICE 
HRMINT (Hermite Interpolation, non-equally spaced samples) function commen-
tary for specifics. 

7.6.14 Chebyshev Polynomials, Nonuniform Spacing 

The Type 14 ephemeris representation stores a collection of packets each of 
which models the trajectory of the given object with respect to another over some 
interval of time. Each file packet contains coefficients for Chebyshev polynomi-
als that approximate the position and velocity components of the identified object 
over the interval of time spanned by the start and end times of the segment.  The 
time intervals corresponding to each packet are non-overlapping. 

Unlike Types 2 and 3, the time spacing between sets of coefficients for a Type 14 
segment may be non-uniform.  Further, Type 14 segments contain more meta 
data than do Types 2 and 3. 
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Each partition contains a numeric value that defines the degree of the Chebyshev 
representation.  The maximum degree that can (currently) be accommodated is 
18. 

The method of evaluation follows that given in the Interpolation chapter of this 
work. 

7.6.15 Precessing Conic Propagation 

The Type 15 ephemeris is a continuous trajectory assumed to follow a compact 
analytic model.  The specified object’s trajectory is modeled as two body motion, 
in which the object orbits the identified central body under the influence of the 
central body’s mass, perturbed by first order secular effects of the 2J  term in 
harmonic expansion of the central body gravitational potential.  These secular 
effects were described earlier in this chapter. 

Each segment in the file defines orbital parameters, including the epoch of peri-
apsis, the orbital pole vector, the unit vector in the direction of periapsis, the 
semi-latus rectum, and eccentricity, along with parameters of the central body, 
including its GM, equatorial radius, 2J , and pole vector.  The secular effects of 

2J  are not applied if the orbital eccentricity is not less than unity. 

At any requested epoch, the body’s position is computed using conic propagation 
with secular corrections as described earlier in this chapter. 

7.6.16 Reserved (European Space Agency ISO) 

The SPICE Type 16 format is reserved for ephemeris elements of European 
Space Agency ISO spacecraft. 

7.6.17 Equinoctial Elements 

The SPICE Type 17 format represents a continuous ephemeris using a compact    
analytic model, in which the identified object is presumed to be following an el-
liptic orbit with a precessing line of nodes and argument of periapsis relative to 
the equatorial frame of an identified central body. The orbit is modeled using 
equinoctial elements. 
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Each segment of the Type 17 ephemeris contains orbital information that in-
cludes the epoch of periapsis; mean longitude at epoch; semimajor axis; mean 
longitude rate; the h, k , p, and q equinoctial elements (described below); and the 
secular rates of change in longitude of periapsis, longitude of the ascending node, 
assumed constant over the time interval between segments.  The body informa-
tion includes the right ascension and declination of the equatorial pole. 

In an earlier section of this chapter, the six osculating elements, ( , , , , , )p pr e i twΩ  
were introduced, all of which had physical interpretations, and which could be 
used to propagate conic motion to any requested epoch.  It was shown that the six 
values present in a given state vector were another set of values that could be 
used to extract these osculating elements and to propagate the conic motion.  The 
six quantities that define a conic are thus not unique. 

As discussed earlier, the ascending node in an orbit of zero inclination and the 
periapsis of a circular orbit are indeterminate quantities.  To avert difficulties in 
describing orbits having low inclinations and/or eccentricities, other parametric 
orbital descriptors have been proposed. 

In 1970, J. L. Arsenault introduced a set he termed equinoctial elements that have 
since been studied and modified by a number of authors since.  Four of these 
elements do not have easily identified physical interpretations, but all are stable 
at low inclinations and eccentricities.  Moreover, JPL’s Roger Broucke was able 
in 1971 to show [Broucke & Cefola 1972] that propagation using these elements 
could be extended to include secula r perturbation terms affecting the motions of 
the periapsis and ascending node. 

The set of equinoctial elements defined by Arsenault and Broucke are listed be-
low, along with their osculating element equivalents. 

 

/(1 )

sin( )
cos( )

tan( /2)sin
tan( /2)cos

pa a r e
M

h e
k e
p i
q i

l w
w
w

= = −
= + + Ω
= + Ω
= + Ω
= Ω
= Ω

 (7-121) 

The osculating elements may be written in terms of equinoctial elements as 
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2 2

1 2 2

1

1

1

(1 )

2tan ( )
tan ( , )
tan ( , )

tan ( , )

p

e h k
r a e

i p q
q p
k q h p h q k p

M k h
w

l

−

−

−

−

= +
= −
= +

Ω =
= + −
= −

 (7-122) 

In this notation, the two-argument arc tangent function is the quadrant-corrected 
computation 1 1tan ( , ) tan ( / )x y y x− −= . 

The method of propagation follows that given in the reference and is embodied in 
the SPICE utility EQNCPV (Equinoctial Elements to Position and Velocity). 

7.6.18 MEX/Rosetta Hermite/Lagrange Interpolation 

The SPICE Type 18 format is meant to be flexible enough to accommodate mul-
tiple mathematical representations of ephemerides as may evolve over time, in 
such a way as to avoid further proliferation of SPK data types.  Orig inally meant 
to support ephemerides used by the European Space Agency (ESA) on the Mars 
Express (MEX) and Rosetta missions, the SPK Type 18 architecture was made 
very general, so applicability is not limited to these missions.  

Each Type 18 mathematical representation of an ephemeris data set is identified 
as a subtype.  As of this writing, SPICE supports two Type 18 subtypes, desig-
nated 0 and 1. 

Subtype 0 implements separate sliding-window Hermite interpolations of posi-
tion and velocity.  Each ephemeris segment is represented as a series of 12 ex-
tended state vectors and their associated time tags, which may irregularly spaced.  
Each extended state vector contains position, velocity, and acceleration vectors in 
Cartesian coordinates.  Position interpolation uses position and velocity samples 
to form a Hermite polynomial, from which the position is calculated.  Similarly, 
velocity interpolation uses velocity and acceleration samples to form a Hermite 
polynomial, from which the velocity is computed.  The same interpolation degree 
is used for each position and velocity component.  An interpolated velocity found 
by differentiating the position polynomial may not agree with that interpolated 
using the velocity polynomial, except at the given time tags. 
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Subtype 1 implements separate sliding-window Lagrange interpolations of posi-
tion and velocity.  Each ephemeris segment in this case is represented as a se-
quence of 6 state vectors in Cartesian coordinates and their associated time tags, 
which may be irregularly spaced.  Position components are interpolated sepa-
rately from velocity components, and thus are, in principle, independent.  Inter-
polated velocities found by differentiating the position polynomial may not be 
equal to the corresponding values found by interpolating the velocity polynomial.  
The same interpolation degree is used for each position and velocity component. 

The sliding-window interpolation works by defining a set of consecutive time 
tags, or window, centered as closely as possible on the request epoch.  The win-
dow size is somewhat variable, but in any case  never includes more than half the 
specified nominal number of points on either side of the requested time. 

Lagrange and Hermite interpolations are carried out using SPICE functions 
LGRINT and HRMINT, respectively. 

7.7 MPG Special Ephemeris Utility SPKBRK 

The MPG curve fitting object generates a polynomial profile that describes a 
required DSN data type within a prespecified error over a requested time interval.  
Experience has shown that special care is required not to generate any of the 
polynomials making up the profile using ephemeris data that derive from 
separate segments for the same body in the chain between observer and target.  
When this condition is not met and discontinuities appear at a segment boundary, 
the resulting polynomial exhibits an error pattern that is referred to as “ringing.” 

For example, suppose that a particular DSS begins observing, at the TAI time 1t , 
the state of a spacecraft about Mars relative to the DSS at the spacecraft time 2t  
that is one light-time earlier.  In computing the observed state vector, SPICE 
accesses ephemerides of the DSS relative to Earth, Earth relative to the SSB, 
Mars relative to the SSB, and the spacecraft relative to Mars.  The epoch at 
which each ephemeris is accessed is found in a particular segment of that 
ephemeris file.  In order to avoid ringing, it is sufficient that all other accesses 
used to generate that polynomial have times that are covered by these same 
segments.  The maximum ending time that can apply to a polynomial is the least 
time boundary among the segments involved. 



Fundamentals of Orbital Mechanics 
 

61 

The NAIF special routine SPKBRK determines these boundaries.  The example 
above corrected for light-time (planetary) aberration.  The same conditions apply 
to other forms of aberration (including none).  For a specified state vector defined 
by time, target, observer, type of aberration correction, light-travel direction, and 
reference frame, SPKBRK finds the maximal interval containing the requested 
time, over which the state is continuous.  It also finds the upper bound of the pre-
vious neighboring continuity interval and the lower bound of the subsequent 
neighboring continuity interval. 

Under certain circumstances SPKBRK reports small gaps in coverage between 
segments.  These gaps are generally small, but since MPG predictions must cover 
an entire given time interval, these situations require that some bridge be gener-
ated to cover the breech.  The cubic splines discussed in the Interpolation chapter 
are applied in these cases. 

Since the beginning time of a polynomial is, in some sense, random with respect 
to segment boundaries, some polynomial intervals may be arbitrarily short when 
the beginning time corresponds to a segment time that is very near the end of the 
segment.  It is also typical of trajectories undergoing launch, midcourse correc-
tion, and landing maneuvers that ephemeris segments can be very short. 

Not all segment boundaries produce discontinuities in the accessed state vectors.  
But some do, and to assure that fidelity requirements could always be met, MPG 
development came to observe all segment boundaries as polynomial boundaries. 

It would perhaps have been of advantage to augment the SPKBRK utility to check 
for continuity of the returned state vector at segment boundaries.  However, no 
such adaptation was made in the first operational version of the MPG.  
Subsequent studies have shown, if no discontinuities in position or velocity are 
present, that the effects of ringing are not readily discernable.  It would be 
possible, in such cases, to extend polynomial fit intervals to limits imposed by 
interpolation error.   

SPKBRK is capable of operating correctly as advertised with all of the SPICE 
ephemeris types that were accommodated as of its completion date.  However, 
should the SPICE toolkit later be expanded to include other ephemeris types, 
SPKBRK may require alteration if the MPG is required also to accommodate 
these types. 
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